

 1

 2

Upon successful completion of this practical exercise, you’ll be
able to:

• Use MATLAB programming structures to write a
program that decodes the colour codes on 4- or 5- band
resistors.

• Apply programming structures including loops and
conditional statements to a MATLAB program.

• Become familiar with writing and implementing user-
defined functions in MATLAB.

Resistors are one of the fundamental building blocks of electric
circuits and can be found in just about every electrical/electronic
circuit in existence. Their purpose is to impede the current flow
in an electrical circuit. The relationship between voltage, current
and resistance in a circuit is defined by ‘Ohm’s Law:’

IRV =

where V is the voltage (in Volts), I is the current (in Amperes)
and R is resistance (in Ohms).

For through-hole type resistors, where the legs of a resistor are
inserted through a printed circuit board (PCB) and soldered
onto the under-side of the board, a colour-code is utilised to
allow people to determine the value and tolerances of a resistor.

There are two main types of resistor colour codes; 4-band codes
and 5-band codes. For the four band codes the colours show the
following:

- The first and second colours refer to the first two numbers of
the resistor value.

- The third band is the multiplier and

- The last band is the tolerance.

 3

In the 5-band case the colours are similar:

- The first, second and third colour bands now represent the
first three numbers in the resistor value.

- The fourth band is now the multiplier and

- The fifth band is the tolerance.

The chart in Figure 1 shows how resistor values are determined
by using the colour codes.

Figure 1: Resistor colour codes [1]

Therefore if a 4-band resistor has the colour code: green, blue,
red and gold (as shown in the top diagram) it would have the

value: 56  100 = 5600 (or 5.6 k) with a tolerance of 5%. In
the 5-band example the colour code yellow, violet, black, red

and brown would give a resistance of 470  100 = 47,000 (or 47

k) with a tolerance of 1%.

 4

A company wants you to write a MATLAB program that:

- Calculates and displays a resistor value along with its tolerance for a

colour code entered by a user.

- Consists of an initial menu system displayed to the user with

instructions on how to enter their colour bands.

- Allows a user to enter resistor band colours for either 4-band or 5-

band resistor types.

- Has error checking/input validation including notifying and re-

prompting the user for input if they enter an invalid menu selection or

colour.

- Displays the decoded resistor value and tolerance to the user in a user-

friendly way on the Command Window.

This program must work for both 4- and 5- band resistor types.

Your program must also be a text-based user interface (not a Graphical User

Interface (GUI)).

Refer to the sample program we tested in class during the week 1 lectorials for

suggestions on how your program could work.

Exercise:

Start by writing down the problem statement so the requirements of this task
are clear to you, check with your tutor if you are unsure of what you need to
be doing.

Points to be addressed:

- The problem statement should be clear and concise, double-check
with your tutor if you are not sure of anything written in the problem
statement.

 5

Exercise:

Using the information given on the previous page determine the input you
have/need to solve the problem and what you need to output to accomplish
the objective.

Points to be addressed:

- What input data types do you need/have (numeric, words, images,
graphical, files?). Describe these in detail including format of any files
needing to be imported.

- Also think about what you’ll need to output to fulfil this task,
(numbers, words, images, graphical output?). Describe these in detail.

- What assumptions (if any) are you making to help you solve/simplify
the problem

Exercise:

Using the information given on the previous pages, determine:

- What would be the best way to obtain colour selections from your
user? What would reduce the possibility of invalid inputs?

- How could these selections be used to mathematically calculate the
resistor’s value and tolerance? Clearly show any mathematics your
report.

- The order your program will be required to perform operations in (use
a flow-chart to show this).

Points to be addressed:

- Make sure you have clearly shown the flow of your program as a flow-
chart giving clear indications of the order you need to perform
operations in.

- Show evidence your selected equations/formulae will work by testing
your algorithm using a small set of data/resistor colours.

- Make sure all this section is neatly typed (not handwritten) in your
write-up.

 6

Exercise:

In a new MATLAB script file implement your algorithm.

You’ll need to use the disp() and input() functions to display a menu and

get your user’s input.

You’ll also need to use loops and conditional statements to check for the
validity of your user’s input and make a decision on whether to continue or
re-prompt your user for input.

Points to be addressed:

- Make sure to test your program and perform a reality check by
comparing your MATLAB output to either your handworked answer
from task 3 and/or the sample resistor values from Lectorial 1. The
output should be the same as these. If not, troubleshoot your program
to find where the mistake is.

- Make sure to use appropriate names for all your variables and have
commented your code.

- Make sure all Command Window output is easy to understand and
follow. Your program must be user-friendly.

 7

For this part of the practical, you’re required to enhance your program from

part 1 by including a user-defined function that handles the mathematics

required to decode the resistor colour codes.

Your program must be structured as follows:

- Your main MATLAB script must handle the user-interface elements

of your program only. I.e. it will contain the menu system, user input

and the code that outputs the final answer to the Command Window.

- Your main MATLAB script must also call your user-defined function

from within its code.

- Your user-defined function must only handle the mathematical

elements of the colour code decoding. The resistor’s value and

tolerance will then be returned from your function back to your main

script.

- Error checking/input validation may be included in both your main

script and user-defined function where relevant.

- Please ensure you’ve watched the lecture videos on user-defined

functions (week 6 lecture) and ask teaching staff questions about this if

you’re stuck.

- Please also refer to the list of useful functions at the end of this

document (Table I) for some of the functions available in MATLAB that

will help with writing user-defined functions.

This program must still work for both 4- and 5- band resistor types.

Your program must still be a text-based user interface (not a Graphical User
Interface (GUI)).

Refer to the sample program we tested in class during the week 1 lectorials for
suggestions on how your program could work.

 8

Exercise:

Using the information given on the previous page state the extended problem
concisely and determine the input you have/need to solve the problem and
what you need to output to answer the question.

Points to be addressed:

- The problem statement should again be clear and concise, double-
check with your tutor if you are not sure of anything written in the
problem statement (if you’re unsure of what a user-defined function is,
please make sure to check this before continuing the task).

- What input/output data types do you need (numeric, words, images,
files, graphical output?). Again, be detailed in your explanation here.

- What assumptions are you making to help you solve/simplify the
problem.

Exercise:

Again, use the information given on the previous pages to design your
extended program:

- Use flow-charts to show the order of operations for your program,
including the user interface and your user-defined function.

Points to be addressed:

- Ensure this section is neatly typed (not handwritten) in your write-up.

 9

Exercise:

Now extend your existing resistor colour-code decoder program to include the
MATLAB user-defined function that decodes the resistor colours.

Your solution MUST contain a user-defined function to ensure you’ve
fulfilled the requirements of this practical task. Make sure you’ve
done this before submitting your work to Canvas!

Points to be addressed:

- Make sure to again test your program works by comparing your
MATLAB output to your handworked answers and/or the sample
resistor values from Lectorial 1.

- Make sure to present thorough evidence of testing your program
with a wide range of inputs (resistor colour-codes) in your
report.

- Also, make sure to clearly present your program’s output with a
discussion on how well it fulfils the requirements of the task in your
report (strengths and weaknesses).

- Lastly, check the report guidelines on Canvas (under the Week 1
Module -> Assessment Task Instructions (IMPORTANT) -> Practical
Instructions) to make sure you’ve covered all aspects of the problem-
solving methodology adequately.

 10

Function Description

Functions for Functions

nargin Returns the number of arguments that have
been input into a function.

Used in functions to make sure the correct
number of arguments has been passed to a

function. Can be used with if-statements inside
a function.

nargout Returns the number of expected arguments
being output from a function.

Again this can be used to check an appropriate
number of output arguments have been

requested from the function. Again can be used
with if-statements inside a function.

varargin Allows for a variable number of optional
arguments to be input into a function.

Syntax example:
function x = MyFunc(a, b, varargin)

varargout Allows for a variable number of optional
arguments to be output from a function.

Syntax example:
function [out1, varargout] =

MyFunc(x, y)

Logical Operators

strcmpi(x, ’str’) Case-insensitive string compare. Takes a string
variable (x) and compares it to the string

‘str’.

strcmpi() will return true (1) if the two
strings match and false (0) if they are different.

Syntax example:
if strcmp(x, ‘hello’) %does x

contain the string ‘hello?’

 disp(‘You said hello!’)

else

 disp(‘You didn’t say hello.’)

end

 11

== Equivalence. Often used in conditional
statements to evaluate whether two variables

are equal to each other. It returns true (1) if the
two values are the same, false (0) if they are

different.

x == 2 % is x equal to 2?

y == x % is y equal to x?

This is not to be confused with the single =
sign which means assignment.

~= Not equal. Same as above but checks if two
variables are not the same. Returns true (1) if
values are not equal and false (0) if they are

equal.

> Greater than. Checks to see if one variable is
greater than the other.

< Less than. Checks to see if one variable is less
than the other.

>= Greater than or equal to. Checks to see if one
variable is greater than or the same as the other.

<= Less than or equal to. Checks to see if one
variable is less than or the same as the other.

|| Logical OR. Often used in conditional
statements to check if one or more conditions

are true.
Syntax example:
if (x==2) || (y==4)

……

end

In this example if either x is equal to 2 or y is

equal to 4 the if-statement will execute

&& Logical AND. Checks if multiple conditions are
true AT THE SAME TIME.

Syntax example:
if (x==2) && (y==4)

……

end

In this example if x is equal to 2 and y is equal
to 4 the if statement will execute.

 12

General useful functions

clear clear by itself will clear all variables from the
workspace.

If clear is followed by a variable’s name(s),
only that variable(s) will be cleared from the

workspace.

Syntax example:

clear % clears every variable

clear var % clears var from

workspace

clear var1 var2 var3 % clears var1,
var2 & var3 from workspace

clc Clears the command window

disp(x) Displays x on the command window. x can
either be a string or a variable.

Syntax example:

disp(‘Hello World!’) %Displays

Hello World! on the command window

disp(x) %Displays the contents of

the variable x on the command

window

X=input(‘prompt’)

x=input(‘prompt’,‘s’)

Gets user input from the command window and
stores that input in the variable x.

Syntax example:

x=input(‘Enter a number: ’)

%Prompts user to enter a number

onto the command line

x=input(‘Enter a string: ’,’s’)

%Prompts user to enter a string

onto the command line

length(x) Returns the number of elements in the array x.

[1] Stack Exchange. (2012), Resistor Colour Codes [online]. Available:
http://electronics.stackexchange.com/tags/colour-coding/info

